
Culham Plasma Physics Summer School introductory maths

These questions have been chosen to illustrate some of the mathematical techniques
used during the Culham Plasma Physics Summer School. They are not compulsory but
familiarity with the methods and language will make the lectures easier to follow.

Useful formulae and vector identities (page 3), and worked answers (page 4) can be
found following the questions.

1. Prove the vector identities ∇ · (∇× A) = 0 and ∇ ×∇f = 0. This can be done
by writing out the components in full or by using summation convention.

2. The Earth’s dipole magnetic field can be approximated by

B = −∇
µ0µE · r

4πr3

where the Earth’s magnetic moment µE = 8×1022 A m2 is a vector pointing along
the Earth’s axis of rotation and µ0 = 4π×10−7 T m A−1 is the magnetic constant.

Using spherical polar co-ordinates, derive an expression for the strength of the
Earth’s magnetic field above the equator as a function of r and hence calculate
this value for the surface of the Earth (RE = 6.4 × 106 m) and at r = 5RE .

3. Maxwell’s equations for electromagnetism in free space can be written1

(i) ∇ ·B = 0
(ii) ∇ ·E = 0

(iii) ∇× E + 1

c
∂B

∂t
= 0

(iv) ∇× B −
1

c
∂E

∂t
= 0

A vector A is defined by B = ∇× A, and a scalar φ by E = −∇φ −
1

c
∂A

∂t
. Show

that if the condition

(v) ∇ · A + 1

c
∂φ
∂t

= 0

is imposed, then both A and φ satisfy the wave equations

(vi) ∇
2φ −

1

c2
∂2φ
∂t2

= 0

(vii) ∇
2A −

1

c2
∂2A

∂t2
= 0

(a) First verify that the expressions for B and E in terms of A and φ are consis-
tent with (i) and (iii).

(b) Substitute for E in (ii) and use the derivative with respect to time of (v) to
eliminate A from the resulting expression. Hence obtain (vi).

1This question is taken from Mathematical Methods for Physics and Engineering, Riley et al, CUP.
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(c) Substitute for B and E in (iv) in terms of A and φ. Then use the divergence
of (v) to simplify the resulting equation and so obtain (vii).

4. Assume a small perturbation of the form ξ(r, t) = ξ0 exp(i(k ·r−ωt)) occurs in the
E and B fields in free space. Use equations (iii) and (iv) in Question 3 to derive
the dispersion relation for an electromagnetic plane wave in free space.

(a) First consider what the operators ∇ and ∂
∂t

might look like for such a per-
turbation.

(b) Use the vector triple product a× (b × c) = b(a · c)− c(a · b) to eliminate E

and B, and hence find the dispersion relation.

(c) Write down the phase velocity (vp = ω
k
) and group velocity (vg = ∂ω

∂k
) of such

waves.

5. The first three moments of a distribution function f are given by

(a) 0th: n =
∫

fd3v (number density)

(b) 1st: u = 1

n

∫

vfd3v (fluid velocity)

(c) 2nd: P = m
∫

vvfd3v (pressure tensor)

where the integral is over all velocity space and d3v = dvxdvydvz. The Maxwell-
Boltzmann distribution function in a plasma is given by

f(r,v) = n0

( m

2πkT

)
3

2

exp

(

−
qφ(r)

kT

)

exp
(

−
m

2kT
(v2

x + v2
y + v2

z)
)

where n0 is the overall average number density, m is the particle mass, q is particle
charge, φ(r) is a potential field at position r, k and T have their usual meanings
and vx, vy and vz are the components of the particle velocity vector v.

Find the first three moments of this distribution function.

(For the pressure tensor, the on-diagonal (“ordinary pressure”) terms are given by
Pxx = m

∫

vxvxfd3v and so on, and the off-diagonal (viscosity) terms are given by
Pxy = m

∫

vxvyfd3v etc.)
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Useful equations

Integrals
∫

+∞

−∞

e−αx2

dx =

√

π

α
∫ +∞

−∞

x2e−αx2

dx =
1

2

√

π

α3

Summation convention

u · v = uivi

(u × v)i = εijkujvk

where εijk is the Levi-Citiva symbol: ε123 = 1; εijk = −εikj.

Vector identities

1. A · B× C = A× B ·C = B ·C × A = B× C ·A = C · A× B = C× A · B

2. A× (B × C) = (C × B) × A = (A ·C)B − (A · B)C

3. A× (B × C) + B × (C × A) + C × (A× B) = 0

4. (A × B) · (C × D) = (A · C)(B ·D) − (A · D)(B · C)

5. (A × B) × (C ×D) = (A × B · D)C − (A× B ·C)D

6. ∇(fg) = ∇(gf) = f∇g + g∇f

7. ∇ · (fA) = f∇ · A + A · ∇f

8. ∇× (fA) = f∇×A + ∇f × A

9. ∇ · (A× B) = B · ∇ × A− A · ∇ × B

10. ∇× (A × B) = A(∇ ·B) − B(∇ ·A) + (B · ∇)A− (A · ∇)B

11. A× (∇× B) = (∇B) ·A− (A · ∇)B

12. ∇(A ·B) = A× (∇× B) + B × (∇× A) + (A · ∇)B + (B · ∇)A

13. ∇
2f = ∇ · ∇f

14. ∇
2A = ∇(∇ ·A) −∇×∇× A

15. ∇ · (AB) = (∇ · A)B + (A · ∇)B

Note on formulae

Many useful plasma physics formulae can be found in the NRL Plasma Formulary, which
can be downloaded from http://wwwppd.nrl.navy.mil/nrlformulary/
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Answers

1. The ∇ operator can be written as

∇ =





∂
∂x
∂
∂y
∂
∂z





and therefore

∇× A =







∂Az

∂y
−

∂Ay

∂z
∂Ax

∂z
−

∂Az

∂x
∂Ay

∂x
−

∂Ax

∂y







so

∇ · (∇× A) =
∂

∂x

(

∂Az

∂y
−

∂Ay

∂z

)

+
∂

∂y

(

∂Ax

∂z
−

∂Az

∂x

)

+
∂

∂z

(

∂Ay

∂x
−

∂Ax

∂y

)

=
∂2Az

∂x∂y
−

∂2Ay

∂x∂z
+

∂2Ax

∂y∂z
−

∂2Az

∂y∂x
+

∂2Ay

∂z∂x
−

∂2Ax

∂z∂y

= 0

and

∇f =







∂f
∂x
∂f
∂y
∂f
∂z







so

∇×∇f =







∂2f
∂y∂z

−
∂2f
∂z∂y

∂2f
∂z∂x

−
∂2f
∂x∂z

∂2f
∂x∂y

−
∂2f
∂y∂x







= 0

Using summation convention (and relying on ∂
∂x

(

∂f
∂y

)

= ∂
∂y

(

∂f
∂x

)

):

∇× A = εijk∇jAk

∇ · ∇ × A = ∇i

∑

jk

εijk∇jAk

=
∑

ijk

εijk∇i∇jAk

= 0

and

∇f = ∇if

∇×∇f = εijk∇j∇kf

= 0
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2. We define a co-ordinate system with the z-axis aligned to the Earth’s magnetic
moment and the origin at the Earth’s core, and then our spherical polar co-ordinate
is given by r = (r, θ, φ) where r is the radius, θ is the angle between the magnetic
moment and r (i.e. θ = π

2
−latitude), and φ is the angle around the equator (i.e.

longitude). Then
µE · r = µEr cos θ

In spherical polar co-ordinates

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ

where êr, êθ, êφ are the basis vectors of the spherical co-ordinate system.

Therefore

B = −∇
µ0µE cos θ

4πr2

=
µ0µE cos θ

2πr3
êr +

µ0µE sin θ

4πr3
êθ

At (or above) the equator θ = π
2
, and so the radial term vanishes and sin θ = 1.

Thus
B =

µ0µE

4πr3

and B(RE) = 3.05 × 10−5 T and B(5RE) = 2.44 × 10−7 T.

3. (a) Substituting B = ∇ × A into (i) gives ∇ · (∇× A) = 0, which is consistent
as the div of a curl is always zero (cf. Question 1). Substituting for E into
(iii) and using ∇×∇f = 0 gives

0 = ∇× (−∇φ −
1

c

∂A

∂t
) +

1

c

∂B

∂t

= −
1

c
∇×

∂A

∂t
+

1

c

∂B

∂t

= −
1

c

∂B

∂t
+

1

c

∂B

∂t
= 0

(b) Taking the derivative with respect to time of (v) gives

∇ ·
∂A

∂t
+

1

c

∂2φ

∂t2
= 0

and substituting for E into (ii) gives

0 = ∇ · (−∇φ −
1

c

∂A

∂t
)

= −∇
2φ −

1

c
∇ ·

∂A

∂t

= ∇
2φ −

1

c2

∂2φ

∂t2
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(c) Noting that ∇×B = ∇× (∇× A) = ∇(∇·A)−∇
2A, taking the grad of (v)

(∇(∇ ·A) + 1

c
∇

∂φ
∂t

= 0), and substituting these into (iv) gives

−
1

c
∇

∂φ

∂t
−∇

2A −
1

c

∂E

∂t
= 0

Taking the derivative with respect to time of E gives

∂E

∂t
= −∇

∂φ

∂t
−

1

c

∂2A

∂t2

and substituting this into the previous equation gives

0 = −
1

c
∇

∂φ

∂t
−∇

2A −
1

c
(−∇

∂φ

∂t
−

1

c

∂2A

∂t2
)

= −
1

c
∇

∂φ

∂t
+

1

c
∇

∂φ

∂t
−∇

2A +
1

c2

∂2A

∂t2

= ∇
2A−

1

c2

∂2A

∂t2

4. (a) ∂
∂t

ξ0 exp(i(k · r−ωt)) = −iωξ0 exp(i(k · r−ωt)) = −iωξ, and thus ∂
∂t

= −iω.

For the ∇ operator, ∇ = ∂
∂x

i + ∂
∂y

j + ∂
∂z

k and we can consider each term
individually:

∇xξ =
∂

∂x
ξ0 exp(i(k · r− ωt))

= ξ0 exp(i(kyy + kzz − ωt))
∂

∂x
exp(ikxx)

= ξ0 exp(i(kyy + kzz − ωt))ikx exp(ikxx)

= ikxξ

and similarly with ∇y and ∇z, so ∇ = ikxi + ikyj + ikzk = ik.

(b) From equation (iii) (and substituting for equation (iv) at the appropriate
point):

∇× E = −
1

c

∂B

∂t

ik× E =
1

c
iωB

ik× (k × E) =
ω

c
ik × B

=
ω

c

−iω

c
E

k(k ·E) −E(k · k) = −
ω2

c2
E

k2E =
ω2

c2
E
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as k · E = 0 for a plane wave (the displacement in E is perpendicular to the
wavevector k). Dividing by E gives the dispersion relation

ω2 = c2k2

(c) The phase velocity vp = ω
k

= c, and the group velocity vg = ∂ω
∂k

= c as well.

5. First, define α = m
2kT

.

(a) 0th moment: n =
∫

fd3v

n =

∫

fd3v

= n0

(α

π

)
3

2

exp

(

−
qφ(r)

kT

)∫ ∫ ∫

exp
(

−α(v2
x + v2

y + v2
z)

)

dvxdvydvz

= n0

(α

π

)
3

2

exp

(

−
qφ(r)

kT

)∫ ∫

exp
(

−α(v2
y + v2

z

)

∫

exp
(

−α(v2
x

)

dvxdvydvz

= n0

(α

π

)
3

2

exp

(

−
qφ(r)

kT

)

(π

α

)
1

2

∫ ∫

exp
(

−α(v2
y + v2

z

)

dvydvz

= n0

(α

π

) 3

2

exp

(

−
qφ(r)

kT

)

(π

α

) 3

2

= n0 exp

(

−
qφ(r)

kT

)

(b) 1st moment: u = 1

n

∫

vfd3v

Consider just the x component of the velocity:

ux =
1

n

∫

vxfd3v

=
(α

π

)
3

2

∫ ∫ ∫

vx exp
(

−α(v2
x + v2

y + v2
z)

)

dvxdvydvz

=
(α

π

)
3

2

∫ ∫

exp
(

−α(v2
y + v2

z)
)

∫

vx exp
(

−αv2
x

)

dvxdvydvz

This integral (
∫

vx exp
(

−αv2
x

)

dvx) is an odd function and therefore equals
zero. Thus ux = 0, and similarly uy = uz = 0 as well.

(c) 2nd moment: P = m
∫

vvfd3v

First consider off-diagonal terms:

Pxy = m

∫

vxvyfd3v

= mn
(α

π

)
3

2

∫ ∫ ∫

vxvy exp
(

−α(v2
x + v2

y + v2
z)

)

dvxdvydvz

= mn
(α

π

)
3

2

∫ ∫

vy exp
(

−α(v2
y + v2

z)
)

∫

vx exp
(

−αv2
x

)

dvxdvydvz
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Once again
∫

vx exp
(

−αv2
x

)

dvx = 0 and so Pxy = 0. Similarly, all the other
off-diagonal terms equal zero.

On-diagonal terms:

Pxx = m

∫

vxvxfd3v

= mn
(α

π

)
3

2

∫ ∫ ∫

vxvx exp
(

−α(v2
x + v2

y + v2
z)

)

dvxdvydvz

= mn
(α

π

)
3

2

∫ ∫

exp
(

−α(v2
y + v2

z)
)

∫

v2
x exp

(

−αv2
x

)

dvxdvydvz

= mn
(α

π

) 3

2 1

2

√

π

α3

∫ ∫

exp
(

−α(v2
y + v2

z)
)

dvydvz

= mn
(α

π

) 3

2 1

2

√

π

α3

(π

α

)

=
mn

2α
= nkT

and similarly for Pyy and Pzz. So the pressure tensor for a Maxwellian dis-
tribution function is

P =





nkT 0 0
0 nkT 0
0 0 nkT
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