Culham Plasma Physics Summer School introductory maths

These questions have been chosen to illustrate some of the mathematical techniques
used during the Culham Plasma Physics Summer School. They are not compulsory but
familiarity with the methods and language will make the lectures easier to follow.

Useful formulae and vector identities (page 3), and worked answers (page 4) can be
found following the questions.

1. Prove the vector identities V - (V x A) =0 and V x Vf = 0. This can be done
by writing out the components in full or by using summation convention.

2. The Earth’s dipole magnetic field can be approximated by

HOME - T
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where the Earth’s magnetic moment pg = 8 x 102 A m? is a vector pointing along
the Earth’s axis of rotation and yg = 47 x 10~7 T m A~! is the magnetic constant.

Using spherical polar co-ordinates, derive an expression for the strength of the
Earth’s magnetic field above the equator as a function of r and hence calculate
this value for the surface of the Earth (Rp = 6.4 x 10° m) and at r = 5Rp.

3. Maxwell’s equations for electromagnetism in free space can be written!

(i) V- B=0
(i) V- E=0
(i) VxE+1%8 =0
(iv) VxB-— %%—E—o

A vector A is defined by B =V x A, and a scalar ¢ by E = —V¢ — 1 ‘9A Show
that if the condition

(v) V-A+1%2 -9

o=

is imposed, then both A and ¢ satisfy the wave equations

(vi) V2 —C—Q% 0
(vii) V2A-522 =0

(a) First verify that the expressions for B and E in terms of A and ¢ are consis-
tent with (i) and (iii).

(b) Substitute for E in (ii) and use the derivative with respect to time of (v) to
eliminate A from the resulting expression. Hence obtain (vi).

'This question is taken from Mathematical Methods for Physics and Engineering, Riley et al, CUP.



(c) Substitute for B and E in (iv) in terms of A and ¢. Then use the divergence
of (v) to simplify the resulting equation and so obtain (vii).

4. Assume a small perturbation of the form £(r,t) = {yexp(i(k-r —wt)) occurs in the
E and B fields in free space. Use equations (iii) and (iv) in Question 3 to derive
the dispersion relation for an electromagnetic plane wave in free space.

(a) First consider what the operators V and % might look like for such a per-
turbation.

(b) Use the vector triple product a x (b x ¢) = b(a-c) —c(a-b) to eliminate E
and B, and hence find the dispersion relation.

(c) Write down the phase velocity (v, = %) and group velocity (vy = 8—"];) of such

waves.

5. The first three moments of a distribution function f are given by
(a) 0%: n = [ fd3v (number density)
(b) 18: u =2 [vfd3v (fluid velocity)

(c) 22d: P=m [vvfd®v (pressure tensor)

where the integral is over all velocity space and d3v = dvgdvydv,. The Maxwell-
Boltzmann distribution function in a plasma is given by

f(r,v) =ng (—2:;T> *exp (— q;igf)) exp (—2,%(@3: + g + ’03))

where ng is the overall average number density, m is the particle mass, g is particle
charge, ¢(r) is a potential field at position r, k¥ and T" have their usual meanings
and v, v, and v, are the components of the particle velocity vector v.

Find the first three moments of this distribution function.

(For the pressure tensor, the on-diagonal (“ordinary pressure”) terms are given by
Pre =m [ o0, f d3v and so on, and the off-diagonal (viscosity) terms are given by
Py = mfvxvyfd?’v etc.)



Useful equations

Integrals

Summation convention
u-v = uv;
(U X Vv); = €iKujvy

where ¢;;, is the Levi-Citiva symbol: €123 = 1; g1 = —gj;-
Vector identities

1. ABXxC=AxB-C=B-CxA=BxC-A=C-AxB=CxA-B

2. AxBxC)=(CxB)xA=(A-C)B-(A-B)C

3. Ax(BxC)+Bx(CxA)+Cx(AxB)=0
(AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C)
(AxB)x(CxD)=(AxB-D)C-(AxB-C)D
V(fg) =V(gf)=fVg+gVf
V- (fA)=fV-A+A.-Vf
VXx(fA)=fVxA+VfxA
V- (AxB)=B-VxA-A-VxB
10. Vx(AxB)=A(V-B)-B(V-A)+(B-V)A-(A-V)B
11. Ax(VxB)=(VB)-A-(A-V)B
12. V(A-B)=Ax(VxB)+Bx(VxA)+(A-V) B+ (B-V)A
13. V2f =V -Vf
4. V2A=V(V-A) -V xVxA
15. V- (AB)=(V-A)B+ (A-V)B
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Note on formulae

Many useful plasma physics formulae can be found in the NRL Plasma Formulary, which
can be downloaded from http://wwwppd.nrl.navy.mil /nrlformulary/



Answers

1. The V operator can be written as

7
i
V=1 5
( ]
0z
and therefore
A, 04,
86 8(?4%
VxA=| %z 22
9k, _ oA,
ox oy
SO
o [(0A 0A 0 (0A 0A 0 (0A 0A
V. (VxA) = 2 2 9y 9 (04 0O4z) 0 (04y Ofs
(V> A) 8:1:(83/ 8z>+8y<8z 8:1:)+8z<8:1: 8y>
B 0*A, %A, +82A$ %A, +82Ay 0%A,
~ 0x0y  0x0z  Oydz Oydxr  0z0x 020y
=0
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g
_| o
Vf= i
of
0z
SO
9% f N 9% f
¥
0xdy  Oydx
=0
Using summation convention (and relying on -2 (2L) = 2 (2L));
g ymg Or \O0y )~ Oy \Ox )/*
VxA = sijijAk
V-VXA = Vi) eVl
ik
= Zéijkvzv]Ak
ijk
= 0
and
Vi = Vif
VXVf = Eijkvj'ka
=0



2.

3.

We define a co-ordinate system with the z-axis aligned to the Earth’s magnetic
moment and the origin at the Earth’s core, and then our spherical polar co-ordinate
is given by r = (r, 6, ¢) where r is the radius, 0 is the angle between the magnetic
moment and r (i.e. § = F—latitude), and ¢ is the angle around the equator (i.e.
longitude). Then

UE T = ugrcosf
In spherical polar co-ordinates

8fA 18fA 1 of.

Vf=—=— o r—i——% +m8_¢e¢
where &, &y, &, are the basis vectors of the spherical co-ordinate system.
Therefore
ofLE cos 0
popgcost . poppsing
2mr3 T Arrs 0

At (or above) the equator # = 7, and so the radial term vanishes and sinf = 1.

Thus
HobE

= 43
and B(Rg) = 3.05 x 107° T and B(5Rg) = 2.44 x 1077 T.

(a) Substituting B =V x A into (i) gives V - (V x A) = 0, which is consistent
as the div of a curl is always zero (¢f. Question 1). Substituting for E into
(iii) and using V x Vf = 0 gives

10A 10B
0 = VxVom gt oo
_ 1 0A 10B
N c ot ¢ Ot
_ _1oB 1B
N cdt ¢ Ot

(b) Taking the derivative with respect to time of (v) gives

OA 10% _
ot ¢ o2

and substituting for E into (ii) gives

V-

10A
0 = V-(=Vo-C%)
1 O0A
N v P S
a Ve cv ot
_ g2, L%
N c? Ot2



(c) Noting that VxB =V x (V x A) = V(V-A) - V2A, taking the grad of (v)
(V(V-A)+ %V% = 0), and substituting these into (iv) gives

OB 09 10°A
ot 0t cot?
and substituting this into the previous equation gives
1_09¢ 9 1 dp 10%°A
— IV _V2A (v
0 cv&f v c( v@t c@tQ)
109  1_0¢ 9 1 0%°A
N cv8t+cv8t VA+02 ot?
1 9’°A
— VA _
v c2 Ot?

(a) %fo exp(i(k-r—wt)) = —iwéyexp(i(k - r —wt)) = —iwé, and thus % = —iw.
For the V operator, V = a%i + a%j + %k and we can consider each term
individually:

Vet = goexplilk - wi))

= Coexp(i(kyy + k.2 — wt))a3 exp(ikyx)
x
= &oexp(i(kyy + k.2 — wt))ik, exp(ikyx)

= kg€

and similarly with V,, and V., so V = ik,i + ik, j + tk.k = ik.

(b) From equation (iii) (and substituting for equation (iv) at the appropriate
point):

1B
E = -2
VX c Ot
ikxE — YiwB
C
kx(kxE) = ZikxB
C
_ YT%gm
cC C
w?
k(k-E)-Ek k) = ——FE
C
2
FE = 2B
C



as k- E = 0 for a plane wave (the displacement in E is perpendicular to the
wavevector k). Dividing by E gives the dispersion relation

W2 = 2k2
w

c¢) The phase velocity v, = ¥ = ¢, and the group velocity v, = Qw — ¢ as well.
P~ % 9~ Ok

5. First, define a = 5%.

(a) 0" moment: n = [ fd3v

/exp (a2 + U; +v2)) dvgdvydv,

exp (—a(vg +v2) /exp (—a(v2) dvgdvydv,

= no (% exp | — k;g) (g)é/ exp(—a(’ug—l—vg) dvydv,
(@) e () )
— npexp (_qu(r))

kT

(b) 1% moment: u= 1 [vfd®v

Consider just the  component of the velocity:

Ux = l /Uxfd3v
n
= (Oé)g 2 2 2
-\ vg oxp (—a(v + 02 +2)) dvgdvydv,
3
- (%) 2 //exp (—a(v; +v2)) /”w exp (—av}) dvydvydv,

This integral ([ vy exp (—avg) dv,) is an odd function and therefore equals
zero. Thus u, = 0, and similarly u, = u, = 0 as well.

(¢) 2°4 moment: P =m [ vvfdiv

First consider off-diagonal terms:
P, = m/vxvyfd?’v
= mn (%)% ///vggvy exp (—a(vg + ’Ug + vz)) dvzdvydv,
= mn (%)g //vy exp (—a(vg + vg)) /vx exp (—avi) dvzdvydv,
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Once again [ v, exp (—avg) dv; = 0 and so P, = 0. Similarly, all the other
off-diagonal terms equal zero.

On-diagonal terms:
P, = m/’uggvggfd:gv

3
= mn (%) : ///vxvgC exp (—a(vg + vg + vg)) dvydvydv,

3

= mn (%) : //exp (—oz(v; +02)) /vg exp (—aw?) dvgdvydv,
3

= mn (%) : %1 / % //exp (—a(vg +02)) dvydo,

_ a5 1 [7 /m

- (;) 2V a3 (E)

_ mn

 2a

= nkT

and similarly for Py, and P.,. So the pressure tensor for a Maxwellian dis-
tribution function is

nkT 0 0
P= 0 nklT' O
0 0 nkT



